A discontinuous Galerkin Method for parabolic problems with modified hp-finite element approximation technique

نویسندگان

  • Hideaki Kaneko
  • Kim S. Bey
  • Gene J. W. Hou
چکیده

A recent paper [Hideaki Kaneko, Kim S. Bey, Gene J.W. Hou, Discontinuous Galerkin finite element method for parabolic problems, preprint November 2000, NASA] is generalized to a case where the spatial region is taken in R. The region is assumed to be a thin body, such as a panel on the wing or fuselage of an aerospace vehicle. The traditional has well as hp-finite element methods are applied to the surface defined in the x–y variables, while, through the thickness, the technique of the p-element is employed. Time and spatial discretization scheme developed in Kaneko et al. (2000), based upon an assumption of certain weak singularity of kutk2, is used to derive an optimal a priori error estimate for the current method. 2006 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

hp-Version Discontinuous Galerkin Finite Element Method for Semilinear Parabolic Problems

We consider the hp–version interior penalty discontinuous Galerkin finite element method (hp–DGFEM) for semilinear parabolic equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the error analysis of the hp–DGFEM on shape–regular spatial meshes. We derive error bounds under various hypotheses on the regularity of the solution, for both the symmetric and non–symmet...

متن کامل

Hp -version Discontinuous Galerkin Finite Element Methods for Semilinear Parabolic Problems

We consider the hp–version interior penalty discontinuous Galerkin finite element method (hp–DGFEM) for semilinear parabolic equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the error analysis of the hp–DGFEM on shape–regular spatial meshes. We derive error bounds under various hypotheses on the regularity of the solution, for both the symmetric and non–symmet...

متن کامل

hp Discontinuous Galerkin Time Stepping For Parabolic Problems

The algorithmic pattern of the hp Discontinuous Galerkin Finite Element Method (DGFEM) for the time semidiscretization of abstract parabolic evolution equations is presented. In combination with a continuous hp discretization in space we obtain a fully discrete hp-scheme for the numerical solution of parabolic problems. Numerical examples for the heat equation in a two dimensional domain confir...

متن کامل

A Posteriori Error Estimates for Discontinuous Galerkin Time-Stepping Method for Optimal Control Problems Governed by Parabolic Equations

In this paper, we examine the discontinuous Galerkin (DG) finite element approximation to convex distributed optimal control problems governed by linear parabolic equations, where the discontinuous finite element method is used for the time discretization and the conforming finite element method is used for the space discretization. We derive a posteriori error estimates for both the state and ...

متن کامل

Adaptive Discontinuous Galerkin Methods for Fourth Order Problems

This work is concerned with the derivation of adaptive methods for discontinuous Galerkin approximations of linear fourth order elliptic and parabolic partial differential equations. Adaptive methods are usually based on a posteriori error estimates. To this end, a new residual-based a posteriori error estimator for discontinuous Galerkin approximations to the biharmonic equation with essential...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 182  شماره 

صفحات  -

تاریخ انتشار 2006